The combinatorics of Lehn’s conjecture

نویسندگان

  • A. Marian
  • D. Oprea
  • R. Pandharipande
چکیده

Lehn’s conjecture. The number of (n− 2)-subspaces in P2n−2 which are n-secant to a smooth curve, C ⊂ P2n−2, of genus g and degree d is a classical enumerative calculation [ACGH]. The answer can be expressed in terms of Segre integrals over the symmetric product C [n] of C. Let the line bundle H → C be the degree d restriction of OP2n−2(1). The n-secant problem is solved by the Segre integral, and the answer can be written in closed form [LeB], [C],

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics

The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics 2

متن کامل

On the flat antichain conjecture

We present partial results on the Flat Antichain Conjecture. In particular, we prove that the conjecture is true when the average size of the edges is an integer.

متن کامل

A Counterexample To Kleitman's Conjecture Concerning An Edge-Isoperimetric Problem

Kleitman’s conjecture concerning the “Kleitman–West problem” is false for 3–element subsets.

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

The journey of the union-closed sets conjecture

We survey the state of the union-closed sets conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017